Purdue Scientists Track Salmonella Infection in Real Time

W. Andy Tao and colleagues have developed a method to implant a chemical label that acts like a GPS tracker into live salmonella bacteria. Once inside the bacteria, the probe can be captured at any given time, showing in real time the proteins interacting with the bacteria.
W. Andy Tao and colleagues have developed a method to implant a chemical label that acts like a GPS tracker into live salmonella bacteria. Once inside the bacteria, the probe can be captured at any given time, showing in real time the proteins interacting with the bacteria.
( W. Andy Tao)

When bacteria like salmonella infect and sicken people, they hijack a person’s cell proteins to develop a defense against an immune response. Understanding how that works and developing methods for defending against these bacteria is difficult because scientists haven’t been able to track the hundreds of proteins involved in real time.

Now, W. Andy Tao, a Purdue University professor of biochemistry, and colleagues at Purdue and Fudan University in China, have developed a chemical method — host and pathogen temporal interaction profiling, or HAPTIP — for labeling a living bacteria and tracking it as it invades a host cell. Their findings, published in the journal Angewandte Chemie, may help improve understanding of bacterial infections and lead to the development of new drugs.

“The interaction between host cells and pathogens are highly dynamic and complex with many questions to be answered. It is extremely valuable to provide a dynamic picture of such interactions during the infection process,” the authors write. “It is conceivable that the general strategy of HAPTIP can be applicable to many bacteria or virus, thus contributing to the discovery and understanding of host–pathogen interactions in multiple infection systems.”

Salmonella bacteria fend off a cell’s immune defenses by creating a pocket within the cell, called a Salmonella-containing vacuole, in which to hide. The bacteria hijacks and uses hundreds of the cell’s proteins to do so, making identification of those proteins key to thwarting the bacteria.

The HAPTIP method involves labeling the salmonella bacteria with a diazirine group, a chemical group that creates covalent bonds between Salmonella proteins and host cell proteins when an ultraviolet light is shined on the cell. A chemical probe enriches all the crosslinked proteins and isolates them from the other cell extracts. Scientists can then use mass spectrometry to identify the proteins.

One of the method’s strengths is that it can work at any point after salmonella has been introduced to the healthy cell. In their findings, the scientists tested the method at 15 minutes, one hour and six hours after salmonella infected a cell and identified more than 400 proteins interacting with the salmonella bacteria.

“You can design any time point based on when you choose to shine the UV light on the cells,” Tao said. “By looking at which proteins are interacting with the bacteria at those different times, we can determine the method the bacteria are using to hijack the cell, which will differ as time passes.”

Developing strategies to treat foodborne illnesses that stem from bacteria like salmonella and E. coli could have significant impact globally. The World Health Organization estimates there are 600 million global cases of foodborne illnesses each year resulting in 420,000 deaths.

The U.S. National Institutes of Health and National Science Foundation, as well as the Natural Science Foundation of China, funded this research.

 

Latest News

Hogzilla or Jaws? Wild Pigs Kill More People Than Sharks, Shocking Research Reveals
Hogzilla or Jaws? Wild Pigs Kill More People Than Sharks, Shocking Research Reveals

It’s not sharks, wolves, or bears that kill the most people—it’s wild pigs, and the numbers are trending up.

Summer 2024 Predicted to Bring on the Heat
Summer 2024 Predicted to Bring on the Heat

Bust out the sunscreen and cattle misters. It’s gonna be a hot one this summer if USDA meteorological predictions are correct.

Benefits of Estrus Synch and Artificial Insemination
Benefits of Estrus Synch and Artificial Insemination

Manipulating the reproductive process of your cow herd can result in shorter breeding and calving seasons with more calves born earlier in the season resulting in an older, heavier, more uniform calf crop when you wean.

Seven Proven Methods to Prevent Mastitis and Boost Milk Yield  
Seven Proven Methods to Prevent Mastitis and Boost Milk Yield  

A strategic dry cow program can prevent new mastitis cases, enhance udder health and increase milk production.    

Veterinarians Detail Ear Tag, Tattoo Equipment and Best Practices
Veterinarians Detail Ear Tag, Tattoo Equipment and Best Practices

Individual identification of cattle is important for many reasons, making it possible to identify a number of important management aspects.  

South Dakota Confirms First Case of HPAI in a Dairy Herd
South Dakota Confirms First Case of HPAI in a Dairy Herd

South Dakota Dairy Producers encourages all dairy producers to closely monitor their herd and contact their herd veterinarian immediately if cattle appear symptomatic.